

Lake Quinsigamond Watershed Association PO Box 4243, Boston Turnpike Shrewsbury, MA 01545

MassDEP – Watershed Planning Program 8 New Bond St Worcester MA 01606 Attention: Robert Smith RE: Water Quality Monitoring Lake Quinsigamond -EColi

Dear Mr. Smith,

Enclosed are the data deliverables for the 2023 sampling project performed in accordance with the approved 2022-2024 Water Quality Monitoring Program QAPP for "Bacterial Monitoring of Tributaries to Lake Quinsigamond".

Data deliverables include, and not limited to, sampling methodology, sampling locations with summary and site assessments, laboratory results, field observation results, quality control and quality assurance methods/results, summary reports, and supporting supplemental records. If you have any questions or need additional information, please feel free to contact me, Gia Coleman or Barbara Kickham.

Sincerely,

Michael Liberty

Michael Liberty LQWA, Board Member

Ecc: MassDEP-QA Manager Gia Coleman, LQWA Barbara Kickham, LQWA Peter Collins, LQC Katie Liming, City of Worcester Lakes & Pond

Lake Quinsigamond EColi Bacteria Monitoring Program 2023

Bacteria Monitoring in Select Streams and Outfalls to Lake Quinsigamond

Lake Quinsigamond Watershed Association In Partnership With Lake Quinsigamond Commission City of Worcester, Department of Public Works, Lakes and Ponds Program

Contents

Introduction	4
Methods Used	4
Study Area	5
Data Quality Objectives	7
Sequential Data	10
References	16

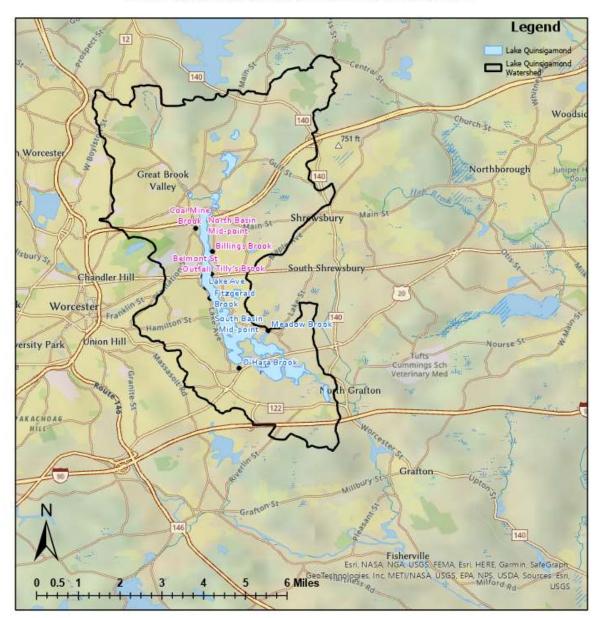
Introduction

Located in Worcester County, Massachusetts, Lake Quinsigamond is a recreational body of water bordered by Worcester, Shrewsbury, and Grafton. In summer months when aquatic recreation is in high demand, contributions from streams and outfalls present challenges with water quality due to stormwater runoff in the largely urbanized bordering towns, as well as other point and nonpoint source pollution, resulting in beach closures and a lack of access to aquatic recreation for many people, some of whom have few other options available.

The Lake Quinsigamond Watershed Association (LQWA) is a volunteer-run organization founded in 1984 that aims to bring attention to the issue and enhance the quality of life in and around Lake Quinsigamond, Flint Pond, and Shirley Pond. Since its commencement in 2020, this monitoring project has utilized bi-weekly sampling from late spring to early fall at several strategic locations in and around the lake in order to monitor E. Coli levels in the watershed, with minor annual changes to site locations based on new information concerning upstream conditions.

Data collected from this project is provided to the Massachusetts Department of Environmental Protection (MassDEP) to aid in long-term assessment of water quality in and around Lake Quinsigamond. Data is also provided to the town of Shrewsbury and the city of Worcester to encourage action on their part to improve water quality.

This year, the LQWA conducted the Ecoli bacteria monitoring program from May 30th to October 4th, 2023. Samples were collected at ten locations (Figure 1, Table 1); five in the North Basin, five in the South Basin. Two samples were collected mid-lake, two outfalls, and six streams. Sampling occurred on ten days (Table 2), with two weeks between each sampling day. Activities were conducted in accordance with the 2022-2024 Water Quality Monitoring Program (Quality Assurance Project Plan (QAPP) for Bacterial Monitoring of Tributaries to Lake Quinsigamond (LQWA, 2022, 2023a).


The 2024 bacteria monitoring project was jointly funded by the Lake Quinsigamond Commission (LQC), the LQWA, and the City of Worcester Department of Public Works Lakes and Ponds Program.

Methods Used

Sample collection was performed in accordance with LQWA's project-specific Standard Operating Procedure #2020-02: Sample Collection Techniques for Bacterial Samples in Surface Waters, which references the following best practice methods: Field Safety SOP# CN 000.2 (MassDEP, 2009), Lake Sampling SOP# CN 151.0 (MassDEP, 2010), Sample Collection Techniques for Surface Water Quality Monitoring SOP# CN 1.21 (MassDEP, 2009), Field Equipment Decontamination to Prevent the Spread of Invasive Aquatic Organisms SOP# CN 59.5 (2015).

Sample collection was performed by using a combination of a sampling pole and gloved collection by hand. For both site and QA/QC samples, twelve collections were taken on each of the ten sampling days. Sampling events were performed every two weeks, beginning May 30th, 2023, and concluding on October 4th, 2023. Laboratory samples were analyzed for E. Coli by Alpha Analytical using Standards Method 121,9223B-Colilert-QT with 33 analyses (121-Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF).

Study Area

Lake Quinsigamond Watershed and Study Sites

Figure 1. Study area map. North Basin sites are pink, and South Basin sites are blue. The Lake Quinsigamond watershed is shown in black.

Table 1. Study sites with site 1D, hame, town, and coordinates.								
Site ID	Site Name/Desc.	Town	Lat	Long				
01_NB	Belmont St. Outfall	Worcester	42.27422	-71.757372				
04_NB	Coal Mine Brook	Worcester	42.29079	-71.760113				
05_NB	Billings Brook	Shrewsbury	42.28268	-71.754262				
06_NB	Tilly's Brook	Shrewsbury	42.27493	-71.754471				
07_NB	North Basin Mid-point	Midpoint	42.28783	-71.756864				
08_SB	O'Hara Book	Worcester	42.24242	-71.744942				
10_SB	Fitzgerald Brook	Worcester	42.26659	-71.755255				
11_SB	Lake Ave	Worcester	42.27048	-71.756633				
12_SB	South Basin Mid-point	Midpoint	42.25326	-71.745226				
13_SB	Meadow Brook	Shrewsbury	42.25552	-71.734974				

Table 1. Study sites with site ID, name, town, and coordinates.

I. Results

Table 2. Sampling results, organized by site and day. Values exceeding the 410 CFU threshold are in red bold italics.

Sampling Day/Date		#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
SITE ID	SITE NAME	5/30	6/13	6/27	7/11	7/25	8/8	8/22	9/6	9/20	10/4
01_NB	BELMONT STREET OUTFALL	11	86.47	2351	613.14	47.3	22818	517.21	159.67	325.54	980.39
04_NB	COAL MINE BROOK	139.58	290.93	1553.12	1732.89	365.4	23822	517.21	11,190	2462	648.82
05_NB	BILLINGS BROOK	16.13	172.47	307.59	1732.89	69.7	1203.33	86.89	12.11	110.04	11.87
06_NB	TILLY'S BROOK	20.86	209.82	290.93	1413.61	24.6	2433	101.44	102.2	88.23	30.89
07_NB	NORTHBASIN MID_POINT	2.02	8.6	81.26	214.26	15.8	6.32	23.78	1046.24	43.09	22.81
08_SB	OHARA BROOK	435.17	47.25	6367	1413.61	>2419.6	15046	4284	65.68	980.39	25.3
10_SB	FITZGERALD BROOK	123.56	137.35	4798	4257	613.1	81641	325.54	27.85	1986.29	579.43
11_SB	LAKE AVE	11.9	193.49	579.43	816.41	96	3129	69.68	66.95	65.04	57.31
12_SB	SOUTH BASIN MID-POINT	4.13	8.6	13.1	51.22	12.2	13.5	2.01	6.32	4.05	8.52
13_SB	MEADOW BROOK	67.01	87.82	1203.33	866.44	105	387.32	156.48	83.29	204.59	24.62

The following are some notable results from the sampling:

- EColi concentration exceeded the Statistical Threshold Value (STV) of 410 MPN/100 ml in at least one sampling location in nine out of ten sampling events.
- The EColi STV was exceeded at least once at each sample site over the season with the exception of the mid-lake sample in the South Basin. No exceedances were observed there.
- On July 11, eight of the ten sample sites exceeded the STV; the only two that did not were the mid-lake samples. Five of the eight samples exceeded 1,000 MPN/100 ml.
- On August 8, Billings Brook, Tilly Brook and Meadow Brook were sampled prior to the start of a severe rain event, with the remaining samples collected during or just after the rain ceased. Seven out of ten samples exceeded the STV. The highest concentration of EColi observed during the sample season was collected on this day in Fitzgerald Brook with a concentration of 81,641 MPN/100 ml. Extremely turbid, grey water was videoed and reported to the City of Worcester, entering the lake from the Belmont St Outfall.
- On September 6, Coal Mine Brook exhibited a concentration of 11,190 MPN/100 ml. The North Basin midlake sample, which was collected ~200 feet from the mouth of Coal Mine Brook indicated a concentration of 1,046.24 MPN/100ml. This is the only mid-lake sample collected in the LQWA's four year program that

exceeded the STV. With the exception of July 11, samples collected mid-lake reflect "background" bacteria, generally less than 10 MPN/100 ML, occasionally higher.

- Out of the 100 samples collected in 2023; 35 samples exceeded the STV of 410 MPN/100 ml, 22 samples exceeded 1,000 MPN/100 ml, and five samples exceeded 10,000 MPN/100 ml.
- The most problematic locations, those locations with the highest concentration entering the lake are Coal Mine Brook, O'Hara Brook, Fitzgerald Brook, and Belmont Street outfall. Of the sample locations tested by the LQWA, the Belmont Street outfall contributes the largest volume of stormwater to the lake and on 50% of the sample days demonstrated elevated EColi.

Figure 2. Temperature and precipitation over the sampling season, with sampling dates indicated in grey. Data from <u>https://www.ncei.noaa.gov/cdo-web/</u> daily summaries, station ID USW00094746.

Data Quality Objectives

Following data quality reconciliation, performed by Gia Colman and Barbara Kickham, the final deliverables consistently met accuracy objectives outlined in the QAPP (LQWA, 2022). Seven out of ten sampling days met precision objectives outlined in the same document.

			Data Q	uality O	bjectiv	es				
Sampling Day	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Date										
Precision; Field (duplicate	Precision; Field (duplicate)									
Site ID	04_NB	11_SB	13_SB	05_NB	04_NB	10_SB	07_NB	10_SB	04_NB	12_SB
Sample	139.58	193.49	1203.33	1732.89	365.40	81641.00	23.78	27.85	2462.00	8.52
Duplicate	178.21	68.88	770.10	3786.00	248.10	68667.00	18.29	32.25	770.10	7.45
%RPD	5	22	6	10	7	2	9	4	16	6
		•								
Site ID	04_NB	04_NB	06_NB	03_SB	10_SB	07_NB	06_NB	06_NB	10_SB	05_NB
Result	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Data Quality Objective QA/QC the duplica	te and blank samp			ed randomly						
Sampling Day	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Precision; Field (duplicate	e)									
result (%RPD)	5%	22%	6%	10%	7%	2%	9%	4%	16%	6%
DQO Status	Y	N	Y	N	Y	Y	Y	Y	N	Y
Accuracy; Field (blank)	Accuracy; Field (blank)									
result	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Table 3. Field accuracy & precision

Table 4. Lab accuracy and precision from Alpha Analytical. Please note that week 5 samples were subcontracted to a different lab, who did not include their accuracy and precision QC results.

Lab Analysis Date	Alpha Sample ID	Batch Samples	Lab Analysis Time	Result	Week
5/30/2023	WG1785025-1	sample(s) 01-10	16:35	5 <1	1
5/30/2023	WG1785027-1	sample(s) 11-12	16:35	5 <1	1
6/13/2023	WG1790801-1	sample(s) 01-06	15:59) <1	2
6/13/2023	WG1790842-1	sample(s) 07-12	17:20) <1	2
6/27/2023	WG1796770-1	sample(s) 01-10	14:45	5 <1	3
6/27/2023	WG1796771-1	sample(s) 11-12	14:35	5 <1	3
7/11/2023	WG1801971-1	sample(s) 01-10	15:22	2 <1	4
7/11/2023	WG1801976 -1	sample(s) 11-12	15:47	′ <1	4
8/8/2023	WG1813383-1	sample(s) 01-10	14:50) <1	6
8/8/2023	WG1813386-1	sample(s) 11-12	14:50) <1	6
8/22/2023	WG1818798-1	sample(s) 01-10	16:29) <1	7
8/22/2023	WG1818800-1	sample(s) 11-12	16:19	9 <1	7
9/6/2023	WG1824266-1	sample(s) 01-07	15:06	S <1	8
9/6/2023	WG1824318-1	sample(s) 08-12	16:46	δ <1	8
9/20/2023	WG1829912-1	sample(s) 01-10	16:20) <1	9
9/20/2023	WG1829914-1	sample(s) 11-12	16:20) <1	9
10/4/2023	WG1835585-1	sample(s) 01-10	15:33	3 <1	10
10/4/2023	WG1835619-1	sample(s) 11-12	16:07	′ <1	10

Sample locations were selected based on geography, proximity to storm water outflow, tributarytransport status, and historical bacterial impairments and events. Investigation of sampling locations before and after sampling identified vulnerabilities and potential mitigation solutions. These include source tracking and watershed-based planning.

In addition to the sample design in the approved QAPP and SAP, in-depth site assessments were completed at each location. The assessments are based on tributary characteristics, field observations, tertiary evidence of land-use (i.e., storm water systems proximity, recreational use, etc.). Site assessments include imagery and video. Site assessments available upon request.

Table	5. Analy	yte fiel	d QC.
-------	----------	----------	-------

2. Analyte Field QC (use template or provide in other format)		Field Duplicate				Fie	ld Blanks	Performance Evaluation		
Date	Parameter	StationID	Sample ID	Field Result	Dup Sample ID	Dup Result	Sample ID	Field Blank Result	True Value	Result
5/30/2023	E.coli (MPN)	04_NB	L2329924-06	139.58	L2329924-12	178.21	04_NB	L2329924-11	<1	<1
6/13/2023	E.coli (MPN)	11_SB	L2333277-04	193.49	L2333277-11	68.88	04_NB	L2333277-11	<1	<1
6/27/2023	E.coli (MPN)	13_SB	L2336647-08	1203.33	L2336647-12	770.1	06_NB	L2336647-11	<1	<1
7/11/2023	E.coli (MPN)	05_NB	L2339280-10	1732.89	L2339280-12	3786	03_SB	L2339280-11	<1	<1
7/25/2023	E.coli (MPN)	04_NB	L2342615-11	365.4	12	248.1	10_SB	11	<1	<1
8/8/2023	E.coli (MPN)	10_SB	L2345620-07	81641	L2345620-12	68667	07_NB	L2345620-11	<1	<1
8/22/2023	E.coli (MPN)	07_NB	L2348551-02	23.78	L2348551-12	18.29	06_NB	L2348551-11	<1	<1
9/6/2023	E.coli (MPN)	10_SB	L2351518-06	27.85	L2351518-12	32.25	06_NB	L2351518-11	<1	<1
9/20/2023	E.coli (MPN)	04_NB	L2355088-06	2462	L2355088-12	770.1	10_SB	L2355088-11	<1	<1
10/4/2023	E.coli (MPN)	12_SB	L2358438-08	8.52	L2358438-12	7.45	05_NB	L2358438-11	<1	<1

Field quality control audits, monthly check-ins, and data reporting were conducted continuously (May 31st – October 4th) between Barbara Kickham (Quality Control Officer), Jacquelyn Burmeister (Field Coordinator) and Gia Coleman (Project Coordinator, Quality Control Officer). Every sample collected in this program was collected by Abby Beilman, (Sampling Intern), except for Week 8 samples, which were collected by Barbara Kickham. Data entry of field notes and laboratory results were entered by Abby Beilman, then reconciled with Gia Coleman or Barbara Kickham. Revisions were completed by Abby Beilman and checked again by Barbara Kickham. For quality data deliverable specifications, see laboratory results.

In the following figures, Figures 3 through 13, sample results above the "Exceedance" line on the graphs refers to sample results that exceed the Statistical Threshold Value (STV) of 410 MPN/100 ml. The STV may not exceed more than 10% of the samples. This study included ten rounds of samples, therefore only one sample per site may exceed 410 MPN/100 ml in compliance with Massachusetts Surface Water Quality Standards.

Sequential Data

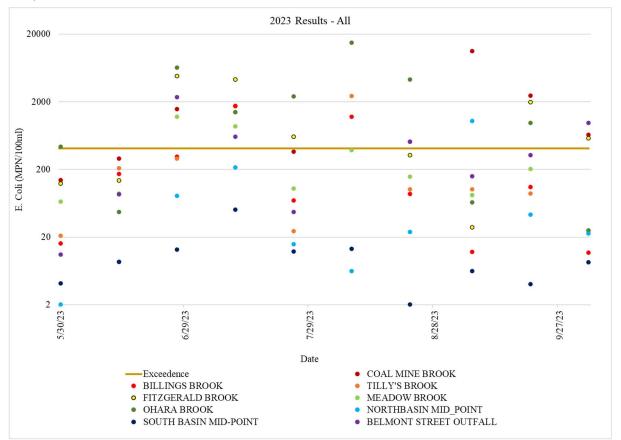


Figure 3. All data for 2023 sampling season. Exceedance indicates results above STV of 410 MPN/100ml.

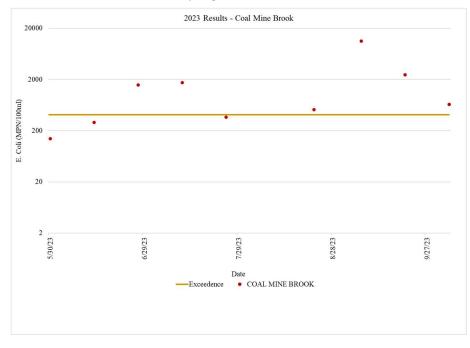


Figure 4. 2023 results for Coal Mine Brook. Exceedance indicates results above STV of 410 MPN/100ml.

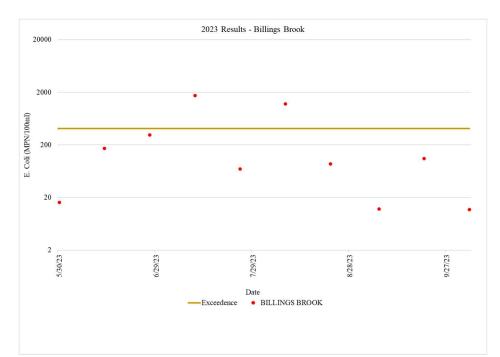


Figure 5. 2023 results for Billings Brook. Exceedance indicates results above STV of 410 MPN/100ml.

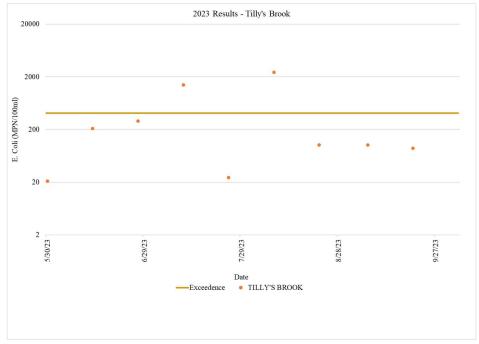


Figure 6. 2023 results for Tilly's Brook. Exceedance indicates results above STV of 410 MPN/100ml.

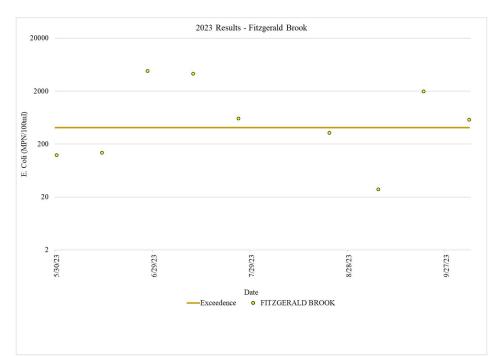


Figure 7. 2023 results for Fitzgerald Brook. Exceedance indicates results above STV of 410 MPN/100ml.



Figure 8. 2023 results for Meadow Brook. Exceedance indicates results above STV of 410 MPN/100ml.

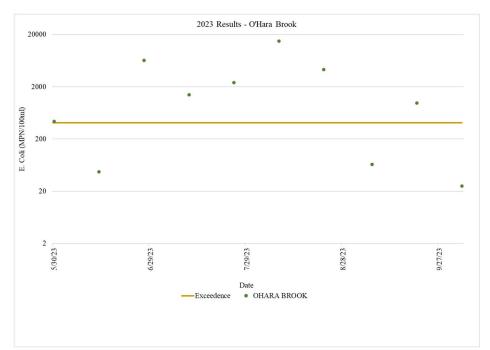
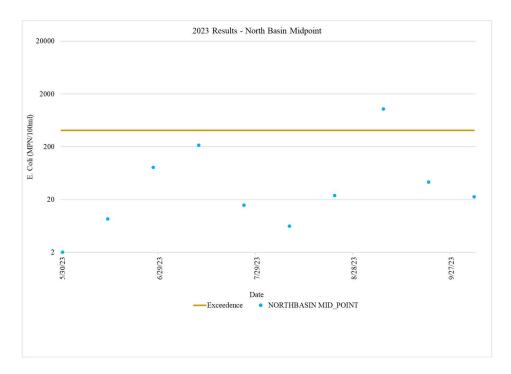



Figure 9. 2023 results for O'Hara Brook. Exceedance indicates results above STV of 410 MPN/100ml.

Figure 10. 2023 results for North Basin Midpoint. Exceedance indicates results above STV of 410 MPN/100ml.

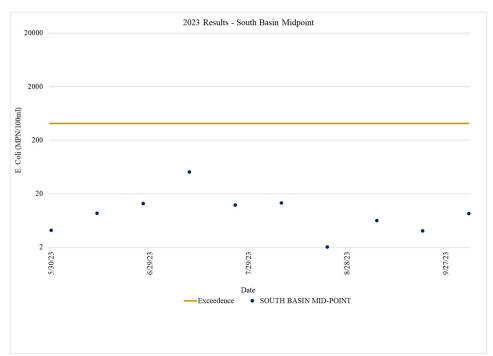
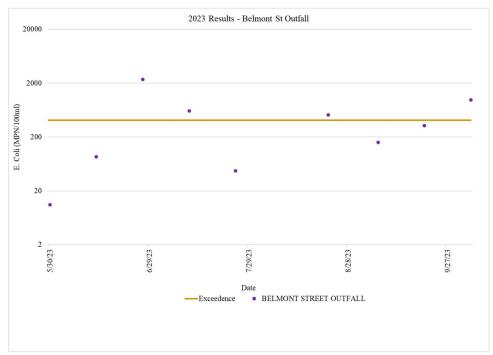



Figure 11. 2023 results for South Basin Midpoint. Exceedance - results above STV of 410 MPN/100ml.

Figure 12. 2023 results for Belmont St Outfall. Exceedance indicates results above STV of 410 MPN/100ml.

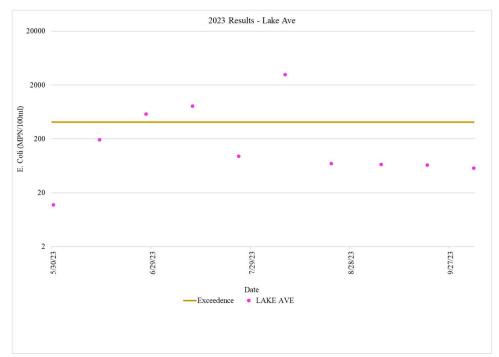


Figure 13. 2023 results for Lake Ave. Exceedance indicates results above STV of 410 MPN/100ml.

All supplementary data provided in separate zipped file.

References

LQWA (2020). Standard Operating Procedure Sample Collection Techniques for Bacterial Samples in Surface Waters #2020-02.

LQWA (2022). 2022-2024 Lake Quinsigamond Water Quality Monitoring Program, Quality Assurance Project Plan.

LQWA (2023a). 2022-2024 Lake Quinsigamond Water Quality Monitoring Program, Quality Assurance Project Plan Amendment Memorandum.

LQWA (2023b). Sampling & Analysis Plan, in Accordance with the Lake Quinsigamond Water Quality Monitoring Program, Quality Assurance Project Plan.

MassDEP (2005). Standard Operating Procedure Data Validation and Usability CN 56.2.

MassDEP (2009a). Standard Operating Procedure Field Safety CN 000.2. (Pp. 6).

MassDEP (2009b). Standard Operating Procedure Sample Collection Techniques for Surface Water Quality Monitoring CN 1.21.

MassDEP (2010). Standard Operating Procedure Lake Sampling CN 151.0.

MassDEP (2015). Field Equipment Decontamination to Prevent the Spread of Invasive Aquatic Organisms, CN 059.95.

MassDEP, (2020). Quality Assurance Project Plan (QAPP), Surface Water Monitoring and Assessment, Division of Watershed Management, CN 520.1. Retrieved from <u>https://Www.Mass.Gov/Doc/Quality-Assurance-Program-Plan-ForSurface-Water-Monitoring-Assessment-2020-2024/Download</u>

MassDEP (2021). Massachusetts Surface Water Quality Standards (314 CMR 4.00). Massachusetts Department of Environmental Protection, 1 Winter Street, Boston, MA